Bernoulli numbers and polynomials of arbitrary complex indices (Q1206222)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Bernoulli numbers and polynomials of arbitrary complex indices |
scientific article; zbMATH DE number 148556
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Bernoulli numbers and polynomials of arbitrary complex indices |
scientific article; zbMATH DE number 148556 |
Statements
Bernoulli numbers and polynomials of arbitrary complex indices (English)
0 references
1 April 1993
0 references
For complex \(\alpha\) with \(\text{Re }\alpha > 1\) the authors define the Bernoulli periodic function \({\mathcal B}_ \alpha(x)\) with period 1 by the Fourier series \[ {\mathcal B}_ \alpha = -2\Gamma(\alpha + 1)\sum^ \infty_{k=1}{\cos(2\pi kx - \alpha\pi/2)\over (2\pi k)^ \alpha}, \] and study its connection with the classical Bernoulli polynomials and Bernoulli numbers.
0 references
Bernoulli periodic function
0 references
Fourier series
0 references
Bernoulli polynomials
0 references
Bernoulli numbers
0 references
0.9199284
0 references
0.9109738
0 references
0.90938675
0 references
0.90934956
0 references
0.9072882
0 references
0.90676326
0 references