On sharp condition for imbedding anisotropic Sobolev-Orlicz spaces in a space of continuous functions (Q1206264)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On sharp condition for imbedding anisotropic Sobolev-Orlicz spaces in a space of continuous functions |
scientific article; zbMATH DE number 148639
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On sharp condition for imbedding anisotropic Sobolev-Orlicz spaces in a space of continuous functions |
scientific article; zbMATH DE number 148639 |
Statements
On sharp condition for imbedding anisotropic Sobolev-Orlicz spaces in a space of continuous functions (English)
0 references
1 April 1993
0 references
Let \(G\subset R^ n\) be a open and bounded set and \(f = (f_ 1, \dots, f_ n)\), where \(f_ i : [0, \infty) \to [0, \infty]\) is Young's function for \(i=1, \dots,n\). The author establishes necessary and sufficient conditions for imbedding anisotropic Sobolev-Orlicz space \({\overset \circ W}^ 1_ f (G)\) into the space of continuous and bounded functions. These results are the proceeding of the author's paper studying the imbedding of isotropic Sobolev-Orlicz spaces from [Mat. Zametki, 9, No. 6, 639-650 (1971; Zbl 0219.46028)].
0 references
Young's function
0 references
anisotropic Sobolev-Orlicz space
0 references
isotropic Sobolev- Orlicz spaces
0 references
0.9443881
0 references
0.9416108
0 references
0.9249756
0 references
0.9244717
0 references
0.9175434
0 references
0.9169334
0 references
0.91627157
0 references