Semilattice decomposition of \(n_{(2)}\)-permutable semigroups (Q1206774)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Semilattice decomposition of \(n_{(2)}\)-permutable semigroups |
scientific article; zbMATH DE number 150425
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Semilattice decomposition of \(n_{(2)}\)-permutable semigroups |
scientific article; zbMATH DE number 150425 |
Statements
Semilattice decomposition of \(n_{(2)}\)-permutable semigroups (English)
0 references
1 April 1993
0 references
A semigroup is called \(n_{(2)}\)-permutable if for every elements \(s_ 1,\dots,s_ n\), there exists \(t\) with \(1\leq t\leq n-1\) and \(s_ 1\dots s_ n=s_{t+1}\dots s_ ns_ 1\dots s_ t\). The author gives several structure theorems on these semigroups.
0 references
\(n_{(2)}\)-permutable semigroups
0 references