Le principe de scindage et l'inexistence d'une \(K\)-théorie de Milnor globale. (The splitting principle and the non-existence of global Milnor \(K\)-theory) (Q1208252)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Le principe de scindage et l'inexistence d'une \(K\)-théorie de Milnor globale. (The splitting principle and the non-existence of global Milnor \(K\)-theory) |
scientific article; zbMATH DE number 166192
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Le principe de scindage et l'inexistence d'une \(K\)-théorie de Milnor globale. (The splitting principle and the non-existence of global Milnor \(K\)-theory) |
scientific article; zbMATH DE number 166192 |
Statements
Le principe de scindage et l'inexistence d'une \(K\)-théorie de Milnor globale. (The splitting principle and the non-existence of global Milnor \(K\)-theory) (English)
0 references
16 May 1993
0 references
The main result of this paper is a minimality result for the Quillen \(K\)- theory of smooth quasi-projective schemes over a field \(k\). Let \(F\) be a functor on such schemes which satisfies some natural axioms; in particular there is to be a natural transformation \(\eta:F\to K\), where \(K\) is the Quillen \(K\)-theory. The author shows that \(\eta:F_ *(X)\to K_ *(X)\) is surjective for each \(X\). As a consequence, there is no good extension of the Milnor \(K\)-theory \(K_ *^ M(k)\) to the category of schemes.
0 references
Quillen \(K\)-theory of smooth quasi-projective schemes
0 references
Milnor \(K\)-theory
0 references