On the eigenvalues and diagonal entries of a Hermitian matrix (Q1208295)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On the eigenvalues and diagonal entries of a Hermitian matrix |
scientific article; zbMATH DE number 166243
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On the eigenvalues and diagonal entries of a Hermitian matrix |
scientific article; zbMATH DE number 166243 |
Statements
On the eigenvalues and diagonal entries of a Hermitian matrix (English)
0 references
16 May 1993
0 references
Let \(A=[a_{ij}]\) be an \(n\times n\) Hermitian matrix, and let \(\lambda_ 1\geq\lambda_ 2 \geq\dots\geq \lambda_ n\) be its eigenvalues. Suppose that, for some \(k\), \(\lambda_ 1+\lambda_ 2 +\dots+\lambda_ k=a_{11}+ a_{22}+\dots+ a_{kk}\). Then the authors show that \(A\) is block diagonal of the form \(\text{diag}(A_ 1,A_ 2)\) where the blocks \(A_ 1\), \(A_ 2\) are \(k\times k\) and \((n-k)\times(n- k)\), respectively.
0 references
Hermitian matrix
0 references
eigenvalues
0 references
block diagonal
0 references