On residual bounds for eigenvalues (Q1209771)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On residual bounds for eigenvalues |
scientific article; zbMATH DE number 168494
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On residual bounds for eigenvalues |
scientific article; zbMATH DE number 168494 |
Statements
On residual bounds for eigenvalues (English)
0 references
16 May 1993
0 references
Given an \(n\times n\) Hermitian matrix \(A=\bigl[ {M \atop R} {{R^*} \atop N}\bigr]\), where \(M\) is a \(k\times k\) matrix, and let \(\lambda_ 1\geq\lambda_ 2 \geq\dots\geq\lambda_ n\) and \(\mu_ 1\geq \mu_ 2\geq\dots\geq \mu_ k\) be the eigenvalues of \(A\) and \(M\), respectively. If \(\| T\|\) denotes the spectral norm (the operator bound norm) of the matrix \(T\) one proves that \(\|\text{diag}(\mu_ 1-\lambda_{i_ 1}, \dots,\mu_ k-\lambda_{i_ k})\| \leq \| R\|\), but this does not hold for all unitarily invariant norms.
0 references
residual bounds for eigenvalues
0 references
distance between eigenvalues
0 references
norm dependence
0 references
Frobenius norm
0 references
Hermitian matrix
0 references
eigenvalues
0 references
spectral norm
0 references
0.94273555
0 references
0.9323141
0 references
0.93019503
0 references
0 references
0.9199261
0 references
0 references
0.9132429
0 references
0.90413725
0 references