On the 2-part of the class number of imaginary quadratic number fields (Q1227024)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On the 2-part of the class number of imaginary quadratic number fields |
scientific article; zbMATH DE number 3515572
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On the 2-part of the class number of imaginary quadratic number fields |
scientific article; zbMATH DE number 3515572 |
Statements
On the 2-part of the class number of imaginary quadratic number fields (English)
0 references
1976
0 references
This paper uses a ``type number formula'' from the theory of quaternion algebras to obtain information on the 2-part of the class number of imaginary quadratic number fields. The type number of a positive definite quaternion algebra \(\mathfrak A\) over \(\mathbb Q\) is just the number of isomorphism classes of certain kinds of orders (in this case Eichler orders) in \(\mathfrak A\). Denote by \(h(-m)\) the class number of \(\mathbb Q(\sqrt{-m})\), \(m\) a square free positive integer. The type number formula involves terms of the form \(2^{-r}h(-m)\) for some \(m\) and some positive integer \(r\). The results in the paper follow from the observation that the type number being an integer imposes certain relations on the class numbers that appear in the formula. Examples of the kind of results obtained are: Let \(p\) be a prime number. \[ \text{If } p\equiv 1(8), \text{then } h(-p) + h(-2p)\equiv \begin{cases} 0(8)\text{ if } p\equiv 1(16) \\ 4(8)\text{ if } p\equiv 9(16). \end{cases} \tag{a} \] \[ \text{If } p\equiv 7(8), \text{then } h(-2p) \equiv \begin{cases} 0(8)\text{ if } p\equiv 15(16) \\ 4(8)\text{ if } p\equiv 7(16). \end{cases} \tag{b} \] Equation (a) is related to results of Hasse and Barrucand-Cohn. Similar results hold for \(p\equiv 3\text{ or } 5(8)\). Let \(p\) and \(q\) be distinct primes \(\ge 3\). \[ \text{If } p\equiv 1(8), q\equiv 1(8) \text{ and }(p/q ) = -1, \text{then } \tag{c} \] \[ h(-pq) + h(-2pq) \equiv \begin{cases} 0(8)\text{ if } pq\equiv 1(16) \\ 8(16 )\text{ if } pq\equiv 9(16). \end{cases} \] \[ \text{If } p\equiv 3(8), q\equiv 5(8) \text{ and }(p/q ) = +1, \text{then } \tag{d} \] \[ 4h(-p) + 2h(-2q) + h(-2pq) \equiv \begin{cases} 4(16)\text{ if } p\equiv 11(16) \text{ or } p=3 \\ 12(16 )\text{ if } p\equiv 3(16), \quad p\ne 3. \end{cases} \] Relations of a similar kind are given for all \(h(-m)\) where \(m\) has 3 or fewer prime factors (except in the case \(m = pqr\) with \(m\equiv 3(8))\). The method can be used to obtain information about \(h(-m)\) for any \(m\), but the statement of the results and the proofs become (much) messier as the number of primes dividing \(m\) increases.
0 references
2-part of class number
0 references
imaginary quadratic fields
0 references
quaternion algebra
0 references
type number
0 references
Eichler order
0 references
discriminants divisible by three or fewer primes
0 references
0 references