A note on a certain error-term (Q1262338)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A note on a certain error-term |
scientific article; zbMATH DE number 4123830
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A note on a certain error-term |
scientific article; zbMATH DE number 4123830 |
Statements
A note on a certain error-term (English)
0 references
1991
0 references
Let k be a natural number. Let \(\delta_ k\) denote the arithmetical function defined by \(\delta_ k(n)=\max \{d\in {\mathbb{N}} :\) \(d| n\), \((d,k)=1\}\). For the error term \(E_ k(x)\), defined by \(E_ k(x)=\sum_{n\leq x}\delta_ k(n)-kx^ 2/2\sigma (k)\), the authors prove: \[ \limsup_{x\to \infty}\frac{E_ k(x)}{x}\leq \frac{1}{2}(1- \frac{1}{p+1})d(k)\quad and\quad \liminf_{x\to \infty}\frac{E_ k(x)}{x}\geq -\frac{1}{2}(1-\frac{1}{p+1})d(k), \] where p is the smallest prime dividing k and d is the divisor function. This improves a result of \textit{J. Herzog} and \textit{Th. Maxsein} [Arch. Math. 50, No.2, 145-155 (1988; Zbl 0616.10035)].
0 references
number of k-free divisors
0 references
multiplicative function
0 references
error term
0 references