Coupling methods for multidimensional diffusion processes (Q1262623)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Coupling methods for multidimensional diffusion processes |
scientific article; zbMATH DE number 4124760
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Coupling methods for multidimensional diffusion processes |
scientific article; zbMATH DE number 4124760 |
Statements
Coupling methods for multidimensional diffusion processes (English)
0 references
1989
0 references
Probability measures \(P^{x,y}\), \(x,y\in R^ d\), on \(C([0,\infty);R^{2d})\) are considered, such that the canonical process \(Z(t)=(X(t),Y(t))\), \(t\geq 0\), is the \(P^{x,y}\)-diffusion process with the matrix of diffusion coefficients \(a(x,y)=\left( \begin{matrix} a(x)\\ c(x,y)^*\end{matrix} \begin{matrix} c(x,y)\\ a(y)\end{matrix} \right)\) and the vector of drift coefficients \(b(x,y)=(b(x)\quad \quad b(y))'\). Criteria are found for the success of coupling, i.e. \[ P^{x,y}\{T<\infty \}=1\quad and\quad P^{x,y}\{X(t)=Y(t),\quad t\geq T\}=1, \] where \(T=\inf \{t\geq 0:\) \(X(t)=Y(t)\}\). Some examples and applications are also studied.
0 references
multidimensional diffusion processes
0 references
coupling
0 references
0.9413709
0 references
0.9205117
0 references