A relative backward perturbation theorem for the eigenvalue problem (Q1262696)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A relative backward perturbation theorem for the eigenvalue problem |
scientific article; zbMATH DE number 4124889
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A relative backward perturbation theorem for the eigenvalue problem |
scientific article; zbMATH DE number 4124889 |
Statements
A relative backward perturbation theorem for the eigenvalue problem (English)
0 references
1989
0 references
If \(| \cdot |\) denotes absolute values taken componentwise the following statement is formulated: If \(| r| =| A\hat x-{\hat \lambda}\hat x| \leq \eta | A| | \hat x|\) holds for an approximate eigenpair (\({\hat \lambda}\),\^x) of A, then there exists a perturbation matrix E satisfying \(| E| \leq \eta | A|\) such that (\({\hat \lambda}\),\^x) is an exact eigenpair of the matrix \(A+E\).
0 references
error bound
0 references
eigenvalue problem
0 references
backward analysis
0 references
perturbation matrix
0 references
eigenpair
0 references