Some remarks on generalized Schur pairs (Q1265455)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Some remarks on generalized Schur pairs |
scientific article; zbMATH DE number 1203765
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Some remarks on generalized Schur pairs |
scientific article; zbMATH DE number 1203765 |
Statements
Some remarks on generalized Schur pairs (English)
0 references
27 February 2000
0 references
Let \(\Phi\) be a set of words in a free group, \(\mathcal X\) a class of groups and \(G\) a group with a normal subgroup \(K\). Let \(\Phi(K,G)\) be the subgroup generated by the set \[ \{\phi(g_1,\dots,g_{i-1},g_ik,g_{i+1},\dots,g_n)\phi(g_1,\dots,g_n)^{-1};\;\phi\in\Phi,\;g_i\in G,\;k\in K,\;1\leq i\leq n\}, \] and let \[ \begin{multlined}\Phi^*(K,G)=\{k\in K;\;\phi(g_1,\dots,g_{i-1},g_ik,g_{i+1},\dots,g_n)=\phi(g_1,\dots,g_n)\\ \forall\phi\in\Phi,\;g_i\in G,\;1\leq i \leq n\}.\end{multlined} \] The pair \((\Phi,{\mathcal X})\) is said to be an ultra weak Schur pair if whenever both \(K/\Phi^*(K,G)\) and \(K/\Phi(K,G)\) belong to \(\mathcal X\), so does \(\Phi(K,G)\). It is a weak Schur pair if this holds in the case where \(K=G\), and a Schur pair if \(K=G\) and only the first inclusion is assumed. Various properties of ultra weak Schur pairs, analogous to those of Schur pairs and weak Schur pairs are proved, and it is shown that if \(\Phi=\{\psi\}\), where \(\psi\) is an outer commutator word, and \(G\) satisfies the maximum condition, then the finiteness of \(\Phi(K,G)\) implies that of \(K/\Phi^*(K,G)\). -- This is a generalization of a result of \textit{R. F. Turner-Smith} [Proc. Lond. Math. Soc., III. Ser. 14, 321-341 (1964; Zbl 0122.26906)], related to a conjecture of \textit{Philip Hall} [J. Reine Angew. Math. 182, 130-141 (1940; Zbl 0023.21001)].
0 references
verbal subgroups
0 references
marginal subgroups
0 references
ultra weak Schur pairs
0 references
0.7788617
0 references
0.64349306
0 references
0.63542354
0 references
0 references
0.63302004
0 references
0.6322057
0 references
0.6244221
0 references
0.6224482
0 references
0.61700505
0 references
0.61664844
0 references