Réalisations de surfaces hyperboliques complètes dans \(H^3\). (Realizations of complete hyperbolic surfaces in \(H^3\)) (Q1266240)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Réalisations de surfaces hyperboliques complètes dans \(H^3\). (Realizations of complete hyperbolic surfaces in \(H^3\)) |
scientific article; zbMATH DE number 1199207
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Réalisations de surfaces hyperboliques complètes dans \(H^3\). (Realizations of complete hyperbolic surfaces in \(H^3\)) |
scientific article; zbMATH DE number 1199207 |
Statements
Réalisations de surfaces hyperboliques complètes dans \(H^3\). (Realizations of complete hyperbolic surfaces in \(H^3\)) (English)
0 references
14 September 1998
0 references
The author treats complete metrics of Gaussian curvature \(K_0\) with \(K_0\in\;]-1,0[,\) defined on a surface \(\Sigma\) which is diffeomorphic to the sphere \(S^2\) minus \(N\) points, \(N\geqslant 3\). He considers the question of embedding into the hyperbolic space \(H^3\) and he demonstrates the following. Given a complete such metric, say \(\sigma,\) with each end having infinite area, then there exists an embedding \(\phi :\Sigma\rightarrow H^3\) with induced metric \(\sigma\), whose asymptotic boundary is the union of disjoint circles of \(\partial_\infty H^3\). Furthermore, \(\phi\) is unique modulo rigid motions of \(H^3\). There is a more precise result (and other related theorems) that the interested reader can find in the paper.
0 references
Gauss curvature
0 references
immersion
0 references
hyperbolic space
0 references
embedding
0 references
0 references
0.90679157
0 references
0 references
0.8830942
0 references
0.88048023
0 references
0.88009477
0 references
0.87425107
0 references
0.87389594
0 references