A note on the asymptotic number of Latin rectangles (Q1266379)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A note on the asymptotic number of Latin rectangles |
scientific article; zbMATH DE number 1199946
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A note on the asymptotic number of Latin rectangles |
scientific article; zbMATH DE number 1199946 |
Statements
A note on the asymptotic number of Latin rectangles (English)
0 references
2 February 1999
0 references
The author uses two inequalities from the theory of permanents, ``Minc's conjecture'' and ``van der Waerden's conjecture'' to study \(L(k, n)\), the number of \(k\times n\) Latin rectangles. He gives a new proof for the asymptotic formula of \textit{C. Stein} [J. Comb. Theory, Ser. A 25, 38-49 (1978; Zbl 0429.05022)] \[ L(k,n)\sim (n!)^k e^{-{k\choose 2}-{k^3\over 6n}} \] on a slightly narrower range then the original---\(k= o(\sqrt{n/\log n})\) instead of \(k= o(\sqrt n)\). In addition, although no asymptotic formula is obtained for \(L(n, n)\), the following new estimate is given: \[ \{L(n, n)\}^{n^{-1-\varepsilon}}\sim e^{-2n^{1- \varepsilon}} n^{n^{1- \varepsilon}}. \]
0 references
Latin square
0 references
permanents
0 references
Latin rectangles
0 references
0.97943175
0 references
0.9599783
0 references
0.9599783
0 references
0.9478502
0 references
0.93084043
0 references
0 references
0.91632897
0 references
0.91468793
0 references
0.9134336
0 references