On eigenfunction decay for two dimensional magnetic Schrödinger operators (Q1268061)

From MaRDI portal





scientific article; zbMATH DE number 1211633
Language Label Description Also known as
English
On eigenfunction decay for two dimensional magnetic Schrödinger operators
scientific article; zbMATH DE number 1211633

    Statements

    On eigenfunction decay for two dimensional magnetic Schrödinger operators (English)
    0 references
    14 October 1998
    0 references
    The authors study the decay properties of the eigenfunctions for the magnetic Schrödinger operator \(H= (\vec p- \vec a(\vec x))^2+ V(\vec x)\), \(\vec x\in\mathbb{R}^2\). The main result is that if \(B'(\vec x)\), \(V(\vec x)\to 0\) as \(|\vec x|\to\infty\), then the eigenfunctions corresponding to \(E\not\in \sigma_L(B_0)\) (the Landau spectrum) decay faster than any exponential.
    0 references
    exponential decay
    0 references
    Landau spectrum
    0 references
    0 references
    0 references
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references