Bounds for Bernstein basis functions and Meyer-König and Zeller basis functions (Q1269668)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Bounds for Bernstein basis functions and Meyer-König and Zeller basis functions |
scientific article; zbMATH DE number 1215741
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Bounds for Bernstein basis functions and Meyer-König and Zeller basis functions |
scientific article; zbMATH DE number 1215741 |
Statements
Bounds for Bernstein basis functions and Meyer-König and Zeller basis functions (English)
0 references
26 October 1998
0 references
The main of this paper is the following result: Let \(n,k,p\in \{0,1,2, \dots\}\) and \(C_p= (p+ 0,5)^{p+0,5} (p!)^{-1} e^{-p-0,5}\). For all \(k,x\) such that \(p\leq k\leq n-p\), \(x\in(0,1)\) \({n\choose k} x^k(1-x)^{n-k} <C_p (nx(1-x))^{-0,5}\). If \(0\leq k\leq n\) and \(x\in(0,1]\) then \({n+k-1 \choose k} x^k(1-x)^n <(2enx)^{-0,5}\). The coefficients \(C_p\), \((2e)^{-0,5} \approx 0.4288819\) and the estimate order \(n^{-0,5}\) are the best possible.
0 references
0 references
0 references
0 references
0.9155515
0 references
0.8699074
0 references
0.86951935
0 references
0 references
0.8668715
0 references
0.8629915
0 references
0.8627956
0 references