Boundary stabilization of a hyperbolic equation with viscosity (Q1269709)

From MaRDI portal





scientific article; zbMATH DE number 1215963
Language Label Description Also known as
English
Boundary stabilization of a hyperbolic equation with viscosity
scientific article; zbMATH DE number 1215963

    Statements

    Boundary stabilization of a hyperbolic equation with viscosity (English)
    0 references
    28 October 1998
    0 references
    The hyperbolic problem \[ {\partial^2y\over\partial t^2}- \nabla\cdot(a_{ij}(x) \nabla)- {\partial\over\partial t} \nabla\cdot(b_{ij}(x)\nabla y)= f\quad\text{in }Q= \Omega\times (0,\infty), \] \[ y= 0\text{ on }\Sigma_1= \Gamma_1\times (0,\infty),\;{\partial y\over\partial\nu_a}+ {\partial\over\partial t} {\partial y\over\partial\nu_b}+ \beta(x)\Biggl({\partial y\over\partial t}- g\Biggr)= 0\text{ on }\Sigma_0= \Gamma_0\times (0,\infty), \] \[ y(0)= y^0;\quad {\partial y\over\partial t}(0)= y^1\quad\text{in }\Omega \] for a viscoelastic system is studied, and asymptotic estimates for the energy decay are found. In fact, if \[ \int^t_0 \exp\Biggl({\varepsilon\over 2} s\Biggr) (| f(s)|^2+ |\sqrt\beta g(s)^2_{\Gamma_0}) ds\leq \alpha t^r, \] where \(\varepsilon, \alpha, r>0\), then \(E(t)\leq C\exp\left(-{\varepsilon\over 2}t\right)\). This is proved using a Galerkin approach and reducing the system to one with zero initial data.
    0 references
    boundary control
    0 references
    asymptotic estimates for the energy decay
    0 references
    Galerkin approach
    0 references
    0 references
    0 references

    Identifiers