Global quadratic units and Hecke algebras (Q1271412)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Global quadratic units and Hecke algebras |
scientific article; zbMATH DE number 1225038
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Global quadratic units and Hecke algebras |
scientific article; zbMATH DE number 1225038 |
Statements
Global quadratic units and Hecke algebras (English)
0 references
22 November 1998
0 references
Summary: Let \(\{\rho_{\mathfrak p}\}_{\mathfrak p}\) be a compatible system of two dimensional \({\mathfrak p}\)--adic Galois representations attached to a cusp form of nebentype \(({D\over })\) (\(D>0\)). The author gives an exact criterion, in terms of the fundamental unit \(\varepsilon\) of \({\mathbb Q}(\sqrt{D})\), determining primes \({\mathfrak p}\) for which the image of \(\rho_{\mathfrak p}\mod{\mathfrak p}\) is dihedral. Then he states a conjecture which gives an explicit description of the universal \(p\)-ordinary deformation ring of such mod \({\mathfrak p}\) dihedral representations.
0 references
global quadratic units
0 references
Hecke algebra
0 references
\({\mathfrak p}\)-adic Galois representations
0 references
fundamental unit
0 references
universal \(p\)-ordinary deformation ring
0 references
dihedral representations
0 references