A functional equation and Jacobian elliptic functions (Q1271582)

From MaRDI portal





scientific article; zbMATH DE number 1220998
Language Label Description Also known as
English
A functional equation and Jacobian elliptic functions
scientific article; zbMATH DE number 1220998

    Statements

    A functional equation and Jacobian elliptic functions (English)
    0 references
    0 references
    28 April 1999
    0 references
    This paper is concerned with the functional equation \(\frac{f(x+y)}{f(x-y)}=\frac{g(x)+g(y)}{g(x)-g(y)}\) where \(f\) and \(g\) are meromorphic functions. It is shown that the general solution can be given in terms of Jacobian elliptic functions, or trigonometric or linear functions obtained thereof as limiting cases. Special consideration is given to solutions which are real on the real axis.
    0 references
    meromorphic functions
    0 references
    general solution
    0 references
    Jacobian elliptic functions
    0 references
    trigonometric or linear functions
    0 references

    Identifiers