Affine spaces over GF(4) (Q1272211)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Affine spaces over GF(4) |
scientific article; zbMATH DE number 1226544
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Affine spaces over GF(4) |
scientific article; zbMATH DE number 1226544 |
Statements
Affine spaces over GF(4) (English)
0 references
24 November 1998
0 references
An algebra \(A\) is said to represent the sequence \((p_0,p_1,\dots)\) if the number of essentially \(n\)-ary term operations in \(A\) is equal to \(p_n\). It was shown by \textit{G. Grätzer} and \textit{R. Padmanabhan} [Proc. Am. Math. Soc. 28, 75-80 (1971; Zbl 0215.34501)] that \((G,\cdot)\) is a nontrivial affine space over \(GF(3)\) if and only if \((G,\cdot)\) represents the sequence \((0,1,1,3,5).\) The authors prove the following Theorem: A groupoid \((G,\cdot)\) is a nontrivial affine space over \(GF(4)\) if and only if \((G,\cdot)\) represents the sequence \((0,1,2,7)\).
0 references
representable sequence
0 references
affine space over GF(p)
0 references
groupoid
0 references
0 references
0.8655192
0 references
0.8644386
0 references
0.8555654
0 references
0.85158956
0 references
0 references