Problème du bord dans l'espace projectif complexe. (Boundary problem in the complex projective space.) (Q1272264)

From MaRDI portal





scientific article; zbMATH DE number 1227219
Language Label Description Also known as
English
Problème du bord dans l'espace projectif complexe. (Boundary problem in the complex projective space.)
scientific article; zbMATH DE number 1227219

    Statements

    Problème du bord dans l'espace projectif complexe. (Boundary problem in the complex projective space.) (English)
    0 references
    0 references
    29 November 1998
    0 references
    In this paper the author searches for the minimal family of projective \((n-p+1)\)-planes in the Grassmannian \(G(n-p+2,n+1)\) such that the generalized Dolbeault-Henkin theorem yet holds, and gives applications of this new result: the generalized Hartogs-Levi theorem, the CR-meromorphic extension theorem and the generalized Gruman-Molzon-Shiffman-Sibony theorem. The latter corollary gives necessary and sufficient condition for an analytic subset of pure dimension \(p\geq 2\) of \(\mathbb{C}^n\) to be algebraic.
    0 references
    Grassmannian
    0 references
    analytic subsets
    0 references
    boundary problem
    0 references
    holomorphic chains
    0 references
    maximally complex
    0 references
    rectifiable current
    0 references
    polynomial hulls
    0 references
    Riemann surfaces
    0 references

    Identifiers