Pseudoconvexity of Riemann domains over a product of complex planes (Q1272710)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Pseudoconvexity of Riemann domains over a product of complex planes |
scientific article; zbMATH DE number 1234922
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Pseudoconvexity of Riemann domains over a product of complex planes |
scientific article; zbMATH DE number 1234922 |
Statements
Pseudoconvexity of Riemann domains over a product of complex planes (English)
0 references
18 November 1999
0 references
The authors prove the following result: Let \((\Omega,\phi)\) be a schlicht Riemann domain over \({\mathbb C}^{\mathbb N}\). If \(\Omega\) is pseudoconvex then there exists an \(n\in\mathbb N\) and a pseudoconvex Riemann domain \((V,\phi| V)\) over \({\mathbb C}^n\) such that \(\Omega={\mathbb C}^{{\mathbb N}\setminus\{1,\dots,n\}}\times V\). For \((\Omega,\phi)\) an open subset of \({\mathbb C}^{\mathbb N}\) the result was proved by \textit{A. Hirschowitz} [Ann. Inst. Fourier 19, No. 1, 219-229 (1969; Zbl 0207.08203)].
0 references
Riemann domain
0 references
pseudoconvex domain
0 references
pluripolar set
0 references