On a conjecture of Chowla et al (Q1273203)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On a conjecture of Chowla et al |
scientific article; zbMATH DE number 1229758
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On a conjecture of Chowla et al |
scientific article; zbMATH DE number 1229758 |
Statements
On a conjecture of Chowla et al (English)
0 references
26 April 2000
0 references
Let \[ N(m,n)= \sum_{k=0}^n \binom {n}{k}^2 \binom{n+k}{k}^m \] where \(m\geq 0\). The author proves several congruences involving the \(N(m,n)\), for example: \[ N(m,p)\equiv 1+2^m\pmod{p^3} \] if the prime \(p>3\).
0 references
binomial coefficients
0 references
congruences
0 references
0 references
0 references
0 references
0 references
0 references