Asymptotic behavior of the spectral function of an operator family (Q1274099)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Asymptotic behavior of the spectral function of an operator family |
scientific article; zbMATH DE number 1238057
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Asymptotic behavior of the spectral function of an operator family |
scientific article; zbMATH DE number 1238057 |
Statements
Asymptotic behavior of the spectral function of an operator family (English)
0 references
23 March 1999
0 references
Let \(\alpha \) be a real number, \(\cot \alpha >0\), and let \(Q\in C(0, +\infty)\). The behaviour is investigated as \(\varepsilon \) tends to \(0\) of the derivative of the spectral function on \((-\infty ,0)\) of the operator defined by the differential expression \(-y''(x) + \varepsilon Q(x)y(x)\) with the boundary condition \(y(0)\cos \alpha + y'(0)\sin \alpha = 0\).
0 references
second-order differential operator
0 references
spectral function
0 references