On the scattering theory for the cubic nonlinear Schrödinger and Hartree type equations in one space dimension (Q1277031)

From MaRDI portal





scientific article; zbMATH DE number 1247676
Language Label Description Also known as
English
On the scattering theory for the cubic nonlinear Schrödinger and Hartree type equations in one space dimension
scientific article; zbMATH DE number 1247676

    Statements

    On the scattering theory for the cubic nonlinear Schrödinger and Hartree type equations in one space dimension (English)
    0 references
    0 references
    0 references
    0 references
    11 April 1999
    0 references
    The article is devoted to the asymptotic behaviour for large time of solutions to the Cauchy problem \[ iu_t+ {1\over 2}u_{xx} =f\bigl( | u|^2\bigr),\;u(x,0)= u_0(x)\;\bigl((x,t)\in \mathbb{R}^2\bigr) \] where either \(f(| u|^2)= \lambda\int | x-y|^{-\delta} | u|^2 (y)dy\) \((\lambda\in\mathbb{R},\;0\leq\delta<1)\), or \(f(| u|^2)=\lambda| t |^{1-\delta} | u|^2\) \((0<\delta<1)\). The initial data are such that \(e^{\beta| x|} u_0\in L^2\) (given \(\beta>0)\) with small \(L^2\)-norm. By using the Schrödinger evolution group \(U(t)=e^{it \Delta/2}\) for the linearized Cauchy problem, the authors prove the sharp decay estimate \(\| u(.,t) \|_{L^p}\leq \text{const.} t^{1/p-1/2}\) for \(t\geq 1\) and \(0\leq p<\infty\) and the existence of a unique final state \(\widehat u_+\in L^2\) satisfying \[ u(t,x)= (it)^{-1/2} \widehat u_+\left({x\over t}\right) \exp\left( {ix^2\over 2t} -{it^{1-\delta} \over 1-\delta} f\bigl(| \widehat u_+|^2 \bigr) \left({x \over t} \right)\right)+ O(t^{{1\over 2} -2\delta}) \] uniformly in \(x\), and analogous \(L^2\)-asymptotics for \(t\geq 1\).
    0 references
    nonlinear Schrödinger equation
    0 references
    scattering
    0 references
    subcritical nonlinearities
    0 references
    asymptotic behaviour for large time
    0 references
    Cauchy problem
    0 references
    decay estimate
    0 references
    0 references

    Identifiers