Koszul bipartite graphs (Q1277205)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Koszul bipartite graphs |
scientific article; zbMATH DE number 1247939
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Koszul bipartite graphs |
scientific article; zbMATH DE number 1247939 |
Statements
Koszul bipartite graphs (English)
0 references
11 April 1999
0 references
Let \(R = K[t_1, \ldots , t_d]\) be the polynomial ring in \(d\) indeterminates over a field \(K\). If \(G\) is a bipartite graph on the vertex set \(\{ 1, \ldots , d \}\), define \(K[G]\) to be the subalgebra of \(R\) generated by all monomials \(t_i t_j\) such that \(\{ i,j \}\) is an edge of \(G\). It is shown that if every \(n\)-cycle \((n \geq 6)\) has a chord, then \(K[G]\) is Koszul.
0 references
bipartite graph
0 references
Koszul algebra
0 references