Products and Lusternik-Schnirelmann category of classifying spaces (Q1279708)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Products and Lusternik-Schnirelmann category of classifying spaces |
scientific article; zbMATH DE number 1251197
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Products and Lusternik-Schnirelmann category of classifying spaces |
scientific article; zbMATH DE number 1251197 |
Statements
Products and Lusternik-Schnirelmann category of classifying spaces (English)
0 references
9 September 1999
0 references
Let \(X=Y\times Z\) be a simply connected finite CW-complex. Using the theory of minimal models, the author proves that the Lyusternik-Shnirel'man category of the classifying space \(B\text{ aut }X\) is not finite if the LS category of \(B\) is finite. If \(\pi_\ast(\Omega X)\otimes{\mathbb Q}\) contains a free Lie ideal of finite codimension, then \(\pi_\ast(B\text{ aut }X)\otimes{\mathbb Q}\) grows exponentially.
0 references
rational Lyusternik-Shnirel'man category
0 references
rational homotopy
0 references
classifying space
0 references
minimal models
0 references
0.96429795
0 references
0.96079314
0 references
0.9432425
0 references
0.93557286
0 references
0.9253419
0 references
0.9159797
0 references
0.91536355
0 references
0.91451204
0 references
0.9073821
0 references