Fourth order linearly recurrent Wythoff pairs (Q1279857)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Fourth order linearly recurrent Wythoff pairs |
scientific article; zbMATH DE number 1251330
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Fourth order linearly recurrent Wythoff pairs |
scientific article; zbMATH DE number 1251330 |
Statements
Fourth order linearly recurrent Wythoff pairs (English)
0 references
20 July 1999
0 references
Let \(\phi\) be the golden ratio and \(a(n)=\lfloor n\phi\rfloor\), \(b(n)=\lfloor n\phi^2\rfloor\) where \(\lfloor\cdot\rfloor\) denotes the greatest integer function. A Wythoff triple is a triple \((i,a(i),b(i))\) where \(i{}\) is a positive integer (note that \(a(i)+i=b(i)\)). The author proves that there is an infinite sequence of Wythoff triples \((I_n,A_n,B_n)\) such that \(I_n,A_n\) and \(B_n\) all satisfy the irreducible linear recurrence \(C_{n+4}=10C_{n+3}- 16C_{n+2}+5C_{n+1}+C_n\).
0 references
Beatty sequences
0 references
fourth order linear recurrence
0 references
Wythoff pairs
0 references
0.9639652
0 references
0.9021835
0 references
0.85151714
0 references
0.84612465
0 references
0.8453003
0 references