Integral transforms of Fourier cosine convolution type (Q1279948)

From MaRDI portal





scientific article; zbMATH DE number 1251429
Language Label Description Also known as
English
Integral transforms of Fourier cosine convolution type
scientific article; zbMATH DE number 1251429

    Statements

    Integral transforms of Fourier cosine convolution type (English)
    0 references
    16 September 1999
    0 references
    The author investigates integral transforms of the type \[ g(x)= \int^\infty_0 [k(x+ y)+ k(| x-y|)] f(y)dy,\quad x\in\mathbb{R}_+ \] in spaces \(L_p(\mathbb{R}_+)\), \(1\leq p\leq 2\). It is proved that this transformation is a bounded operator from \(L_p(\mathbb{R}_+)\), \(1\leq p\leq 2\) into \(L_q(\mathbb{R}_+)\), \(p^{-1}+ q^{-1}= 1\). Furthermore, a Parseval formula, Watson and Plancherel theorems are proved. Particular cases and examples are considered.
    0 references
    integral transforms
    0 references
    Parseval formula
    0 references
    Watson and Plancherel theorems
    0 references
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references