The Dirichlet problem for second order elliptic equations with singular data (Q1280252)

From MaRDI portal





scientific article; zbMATH DE number 1261141
Language Label Description Also known as
English
The Dirichlet problem for second order elliptic equations with singular data
scientific article; zbMATH DE number 1261141

    Statements

    The Dirichlet problem for second order elliptic equations with singular data (English)
    0 references
    0 references
    0 references
    14 March 1999
    0 references
    Let \(\Omega\) be an open subset (not necessarily bounded) of \(\mathbb{R}^n\), \(n\geq 3\). Consider the uniformly elliptic second order linear differential operator \[ Lu =-\sum^n_{i,j=1} a_{ij} u_{x_i x_j} +\sum^n_{i=1} a_i u_{x_i} +au \tag{1} \] with coefficients \(a_{ij}=a_{ji}\in L^\infty(\Omega)\), \(i,j=1,\dots,n\), and the Dirichlet problem \[ u\in W^2(\Omega)\cap \overset\circ W^1(\Omega), \quad Lu=f, \quad f\in L^2(\Omega). \tag{2} \] Our aim is to give some conditions on \(\Omega\) and on the coefficients of \(L\) which imply that the problem \[ u\in W^2_q(\Omega)\cap \overset\circ W^1_{q-1}(\Omega), \quad Lu=f, \quad f\in L^2_q(\Omega), \tag{3} \] is uniquely solvable, where \(q\in \mathbb{R}\), \(W^2_q(\Omega)\), \(\overset\circ W^1_{q-1}(\Omega)\) and \(L^2_q(\Omega)\) are some weighted Sobolev spaces and the weight functions are suitable powers of \(\rho\).
    0 references
    unique solution
    0 references
    weighted Sobolev spaces
    0 references

    Identifiers