On an inverse problem for quasilinear parabolic equations (Q1281867)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On an inverse problem for quasilinear parabolic equations |
scientific article; zbMATH DE number 1268494
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On an inverse problem for quasilinear parabolic equations |
scientific article; zbMATH DE number 1268494 |
Statements
On an inverse problem for quasilinear parabolic equations (English)
0 references
31 October 1999
0 references
Under specific conditions the problem of identifying the parameter function \(a(x,u)\) in the initial-boundary value problem \[ u_t- a(x,u) u_{xx}= 0,\quad 0<x<1,\quad 0<t<T, \] \[ u(x,0)= 0,\quad 0<x<1, \] \[ u(0,t)= f(t),\quad u(1,t)= 0,\quad 0< t<T \] is under consideration in this paper. In particular, uniqueness results for \(a(x,u)\) based on the Dirichlet-to-Neumann map \[ \Lambda(a,f): u(0,t)= f(t)\mapsto u_x(0,t)\quad\text{on }[0, T] \] are of interest. For a subclass of admissible parameter functions it follows that \(\Lambda(a^1, f)= \Lambda(a^2, f)\) implies \(a^1= a^2\) on \([0,1]\times [0,f(T)]\).
0 references
quasilinear parabolic equations
0 references
parameter identification
0 references
Dirichlet-to-Neumann map
0 references
uniqueness
0 references