On an inverse problem for quasilinear parabolic equations (Q1281867)

From MaRDI portal





scientific article; zbMATH DE number 1268494
Language Label Description Also known as
English
On an inverse problem for quasilinear parabolic equations
scientific article; zbMATH DE number 1268494

    Statements

    On an inverse problem for quasilinear parabolic equations (English)
    0 references
    0 references
    31 October 1999
    0 references
    Under specific conditions the problem of identifying the parameter function \(a(x,u)\) in the initial-boundary value problem \[ u_t- a(x,u) u_{xx}= 0,\quad 0<x<1,\quad 0<t<T, \] \[ u(x,0)= 0,\quad 0<x<1, \] \[ u(0,t)= f(t),\quad u(1,t)= 0,\quad 0< t<T \] is under consideration in this paper. In particular, uniqueness results for \(a(x,u)\) based on the Dirichlet-to-Neumann map \[ \Lambda(a,f): u(0,t)= f(t)\mapsto u_x(0,t)\quad\text{on }[0, T] \] are of interest. For a subclass of admissible parameter functions it follows that \(\Lambda(a^1, f)= \Lambda(a^2, f)\) implies \(a^1= a^2\) on \([0,1]\times [0,f(T)]\).
    0 references
    quasilinear parabolic equations
    0 references
    parameter identification
    0 references
    Dirichlet-to-Neumann map
    0 references
    uniqueness
    0 references
    0 references

    Identifiers