A note on Terai's conjecture concerning Pythagorean numbers (Q1281918)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A note on Terai's conjecture concerning Pythagorean numbers |
scientific article; zbMATH DE number 1268654
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A note on Terai's conjecture concerning Pythagorean numbers |
scientific article; zbMATH DE number 1268654 |
Statements
A note on Terai's conjecture concerning Pythagorean numbers (English)
0 references
1 September 1999
0 references
Let \((a,b,c)\) be a primitive Pythagorean triple with \(2| a\). The authors prove that if \(b\equiv 1\pmod{16}\), \(b^2+1=2c,b\) and \(c\) are both odd primes, then the equation \(x^2+b^y=c^z\) has only the positive integer solution \((x,y,z)=(a,2,2)\).
0 references
Terai's conjecture
0 references
Pythagorean numbers
0 references
exponential diophantine equations
0 references
primitive Pythagorean triple
0 references
0.97632754
0 references
0.97632754
0 references
0.9498433
0 references
0 references