A generalization of the duality and sum formulas on the multiple zeta values (Q1284197)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A generalization of the duality and sum formulas on the multiple zeta values |
scientific article; zbMATH DE number 1271763
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A generalization of the duality and sum formulas on the multiple zeta values |
scientific article; zbMATH DE number 1271763 |
Statements
A generalization of the duality and sum formulas on the multiple zeta values (English)
0 references
23 September 1999
0 references
The author generalizes a duality theorem of \textit{D. Zagier} [Prog. Math. 120, 497--512 (1994; Zbl 0822.11001)] on multiple zeta values from which several results of \textit{M. Hoffman} [Pac. J. Math. 152, 275--290 (1992; Zbl 0763.11037)] and others are deduced as special cases. Another application is the evaluation of the integral \[ \xi_k(s)= {1\over\Gamma (s)} \int^\infty_0{t^{s-1} \over e^t-1} Li_k(1-e^{-t})\, dt \] for positive integer values of \(s\), where \(Li_k(z)\) denotes the \(k\)th polylogarithm \(\sum^\infty_{m=0} m^{-k}z^m\).
0 references
sum formulas
0 references
duality theorem
0 references
multiple zeta values
0 references
polylogarithm
0 references
0 references
0.9726479
0 references
0.9468487
0 references
0 references
0.94489425
0 references
0.9399563
0 references
0.93905646
0 references
0.93722486
0 references
0.93393934
0 references