On a generalization of Sobolev spaces (Q1288075)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On a generalization of Sobolev spaces |
scientific article; zbMATH DE number 1285468
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On a generalization of Sobolev spaces |
scientific article; zbMATH DE number 1285468 |
Statements
On a generalization of Sobolev spaces (English)
0 references
10 May 1999
0 references
In [Potential Anal. 5, No. 4, 403-415 (1996; Zbl 0859.46022)], \textit{P. Hajłasz} defined the Sobolev space \(S^1_p(X)\) on an arbitrary metric space. Define the domain \(G_\alpha=\{ (x,y)\in \mathbb R^n: 0<x<1\), \(0<y_k<x^{\alpha _k}\), \(k=1,\ldots n-1\}\). Here \(\alpha=(1,\alpha_1,\ldots ,\alpha_{n-1})\), \(1\leq \alpha_k<\infty\). In the article under review, it is shown that \(S^1_p(G_{\alpha})=L^1_p(G_{\alpha}) \). Embedding theorems for the domains \(G_\alpha\) are also established.
0 references
maximal function
0 references
Sobolev space
0 references
embedding theorems
0 references