Spectral asymptotics of Laplacians on horns: The case of a rapidly growing counting function (Q1289332)

From MaRDI portal





scientific article; zbMATH DE number 1292502
Language Label Description Also known as
English
Spectral asymptotics of Laplacians on horns: The case of a rapidly growing counting function
scientific article; zbMATH DE number 1292502

    Statements

    Spectral asymptotics of Laplacians on horns: The case of a rapidly growing counting function (English)
    0 references
    14 October 1999
    0 references
    Let \(\Omega'\subset \mathbb{R}^{n-1}\) be a bounded domain and let \(f:\overline{\mathbb{R}}_+\to \mathbb{R}_+\) be a function growing at infinity like \(f(t)\to+\infty\) as \(t\to+\infty\). We study the asymptotics of the counting function for the Dirichlet Laplacian \(-\Delta^\Omega_D\) and the Neumann Laplacian \(-\Delta^\Omega_N\) on the horn \(\Omega= \{(t,x)\mid t>0, f(t)x\in\Omega'\}\).
    0 references
    asymptotics of the counting function
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references