An estimate of the \(L_1\)-norm of an exponential sum (Q1290822)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: An estimate of the \(L_1\)-norm of an exponential sum |
scientific article; zbMATH DE number 1294981
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | An estimate of the \(L_1\)-norm of an exponential sum |
scientific article; zbMATH DE number 1294981 |
Statements
An estimate of the \(L_1\)-norm of an exponential sum (English)
0 references
15 November 1999
0 references
The following theorem is proved. Suppose that \(A\geq 1/2\), \(1<\beta< 3/2\), and \(f(n)= [e^{A(\log n)^\beta}]\). Then for any coefficients \(\alpha_n= \pm 1\) and for \(N\geq N_1(\beta,A)>0\) the inequality \[ \int_0^1 \Biggl| \sum_{n=1}^N \alpha_n \exp(2\pi ixf(n)) \Biggr| dx\geq \exp(2^{-15} A^{-2} (\log N)^{3-2\beta}) \] is valid. This improves an estimate of S. V. Bochkarev. The proof uses an estimate of a trigonometric sum due to O. V. Popov.
0 references
\(L_1\)-norm of an exponential sum
0 references
estimate
0 references
0.94893074
0 references
0.9339575
0 references
0.9318639
0 references
0.92910165
0 references
0.9248082
0 references
0.9204201
0 references
0.92041767
0 references
0.9161522
0 references