A product decomposition of \(\Omega^3_0\Sigma\mathbf RP^2\) (Q1292629)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A product decomposition of \(\Omega^3_0\Sigma\mathbf RP^2\) |
scientific article
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A product decomposition of \(\Omega^3_0\Sigma\mathbf RP^2\) |
scientific article |
Statements
A product decomposition of \(\Omega^3_0\Sigma\mathbf RP^2\) (English)
0 references
1 November 1999
0 references
Let \(P^n(2)\) be the \(n\)-dimensional mod 2 Moore space. The author proves that there is a homotopy equivalence \[ \Omega^3_0P^3(2)\simeq \Omega^2S^3\langle 3\rangle\times \Omega^3_0(P^6(2)\vee \Sigma(\mathbb{R} P^4/\mathbb{R} P^1)) \] localized at 2. \((\Omega^3_0 X\) denotes the base-point path-connected component of the triple loop space of the space \(X\)).
0 references
Moore space
0 references
loop space
0 references
0 references
0.84015274
0 references
0.8381156
0 references
0.8379125
0 references
0.8347527
0 references