Riesz potentials and amalgams (Q1294747)

From MaRDI portal





scientific article; zbMATH DE number 1323240
Language Label Description Also known as
English
Riesz potentials and amalgams
scientific article; zbMATH DE number 1323240

    Statements

    Riesz potentials and amalgams (English)
    0 references
    0 references
    0 references
    0 references
    10 August 1999
    0 references
    Le \(M\) be the infinite cylinder and let \(L\) be the Laplace-Beltrami operator of \(M\). Using the notion of amalgams the authors show that the Hardy-Littlewood-Sobolev regularity theorem does not generalize to Riesz potential operators \(L^{-\alpha/2}\). Specifically, they show that such operators do not map \(L^p(M)\) into \(L^q(M)\) where \(1<p<q<\infty\) and \(1/p- 1/q= \alpha/n\). The authors then investigate the smoothing properties of these operators in terms of amalgams.
    0 references
    amalgam
    0 references
    heat equation
    0 references
    Gaussian semigroup
    0 references
    polynomial growth
    0 references
    Riesz potentials
    0 references
    infinite cylinder
    0 references
    Laplace-Beltrami operator
    0 references
    Hardy-Littlewood-Sobolev regularity theorem
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references