Chernoff-type bound for finite Markov chains (Q1296608)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Chernoff-type bound for finite Markov chains |
scientific article; zbMATH DE number 1319835
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Chernoff-type bound for finite Markov chains |
scientific article; zbMATH DE number 1319835 |
Statements
Chernoff-type bound for finite Markov chains (English)
0 references
2 August 1999
0 references
Let \((X_n)\) be an irreducible Markov chain on a finite set \(G\) with transition matrix \(P\) and stationary distribution \(\pi\). Then, for any function \(f\) and for any initial distribution \(q\) the empirical mean \(n^{-1}\sum^n_{i= 1}f(X_i)\) converges in probability to \(\pi f= \sum_y \pi(y)f(y)\). The paper gives exponential bounds for \(P_q\left\{ n^{-1}\sum^n_{i= 1} f(X_i)-\pi f\geq \gamma\right\}\). These bounds involve spectral gap of \(P\).
0 references
empirical mean
0 references
exponential bounds
0 references
spectral gap
0 references
0 references
0 references
0.9434445
0 references
0.93897057
0 references
0 references
0.9298942
0 references
0.9193388
0 references