Lebesgue Sobolev orthogonality on the unit circle (Q1298647)

From MaRDI portal





scientific article; zbMATH DE number 1326429
Language Label Description Also known as
English
Lebesgue Sobolev orthogonality on the unit circle
scientific article; zbMATH DE number 1326429

    Statements

    Lebesgue Sobolev orthogonality on the unit circle (English)
    0 references
    12 March 2000
    0 references
    This is a very nicely written paper extending results for monic orthogonal polynomials \(P_n\) as \(n\rightarrow\infty\) on growth of the norm, pointwise limits and the radius of the disk containing all zeros to the case of the following Sobolev inner product on the unit circle: \[ \langle f(z),g(z)\rangle_s=\int_0^{2\pi} f(e^{i\theta})\overline{g(e^{i\theta})} d\mu(\theta) + \sum_{k=1}^p \lambda_k \int_0^{2\pi} f^{(k)}(e^{i\theta})\overline{g^{(k)}(e^{i\theta})} {d\theta\over 2\pi},\quad z=e^{i\theta}, \] where \(d\mu(\theta)\) is a finite positive Borel measure on \([0,2\pi]\) with infinite support, verifying the Szegő condition and with \(\lambda_1>0\), \(\lambda_k\geq 0\;(2\leq k\leq p), d\theta/2\pi\) the normalized Lebesgue measure on \([0,2\pi]\).
    0 references
    orthogonal polynomials
    0 references
    Sobolev inner products
    0 references
    measures on the unit circle
    0 references
    Szegő condition
    0 references
    0 references
    0 references

    Identifiers