Stability results for Ekeland's \(\varepsilon\) variational principle for vector valued functions (Q1298736)

From MaRDI portal





scientific article; zbMATH DE number 1326496
Language Label Description Also known as
English
Stability results for Ekeland's \(\varepsilon\) variational principle for vector valued functions
scientific article; zbMATH DE number 1326496

    Statements

    Stability results for Ekeland's \(\varepsilon\) variational principle for vector valued functions (English)
    0 references
    5 October 1999
    0 references
    Under the assumption that the nonconvex vector valued function \(f\) satisfies some lower semicontinuity property and is bounded below, the nonconvex vector valued function sequence \(f_n\) satisfies the same lower semicontinuity property and is uniformly bounded below, and \(f_n\) converges to \(f\) in the generalized sense of Mosco, the authors obtain the relation: \[ \sqrt\varepsilon- \text{ext }f= \{\overline x: f(x)- f(\overline x)+ \sqrt\varepsilon\|x-\overline x\|e\not\in -C,\text{ when }x\neq \overline x\}\subseteq \varliminf_{n\to\infty} \sqrt\varepsilon- \text{ext }f_n, \] where \[ \sqrt\varepsilon- \text{ext }f_n= \{\overline x: f_n(x)- f_n(\overline x)+ \sqrt\varepsilon\|x-\overline x\|e\not\in -C,\text{ when }x\neq \overline x\}, \] \(C\) is the pointed closed convex dominating cone with nonempty interior \(\text{int }C\), \(e\in \text{int }C\). Under some conditions, the authors also prove the same result if \(f_n\) converges to \(f\) in the generalized sense of Painlevé-Kuratowski.
    0 references
    Mosco convergence
    0 references
    Painlevé-Kuratowski convergence
    0 references
    convergence of a sequence of sets
    0 references
    stability of variational principle for vector valued functions
    0 references
    lower semicontinuity
    0 references
    0 references
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references