Estimation of an autoregressive semiparametric model with exogenous variables (Q1299534)

From MaRDI portal





scientific article; zbMATH DE number 1327281
Language Label Description Also known as
English
Estimation of an autoregressive semiparametric model with exogenous variables
scientific article; zbMATH DE number 1327281

    Statements

    Estimation of an autoregressive semiparametric model with exogenous variables (English)
    0 references
    0 references
    0 references
    23 August 1999
    0 references
    The authors deal with the estimation of an autoregressive semiparametric model \[ X_{t+1}= \varphi(X_t, \dots,X_{t-r+1})+ \psi(Y_t)+ \varepsilon_t, \] where \(\varphi\) and \(\psi\) are unknown nonlinear functions and \(\{Y_t\}\) is an exogenous variable. Two special cases are considered: (1) \(\psi\) is linear \(\psi(Y_t)= AY_t\) with an unknown parameter \(A\); (2) \(\psi\) is nonlinear corresponding to a series expansion. One first estimates parametrically the exogenous part \(\psi(\cdot)\), and then estimates nonparametrically the endogeneous part \(\varphi(\cdot)\). The a.s. and \(L_s\) convergence results are given. Numerical simulations demonstrate the method.
    0 references
    exogeneous variables
    0 references
    kernel nonparametric estimation
    0 references
    semi-nonparametric
    0 references
    autoregressive semiparametric model
    0 references
    nonlinear
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references

    Identifiers