On the norm of the Fourier-Gegenbauer projection in weighted \(L_p\) spaces (Q1299984)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On the norm of the Fourier-Gegenbauer projection in weighted \(L_p\) spaces |
scientific article; zbMATH DE number 1332842
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On the norm of the Fourier-Gegenbauer projection in weighted \(L_p\) spaces |
scientific article; zbMATH DE number 1332842 |
Statements
On the norm of the Fourier-Gegenbauer projection in weighted \(L_p\) spaces (English)
0 references
21 March 2000
0 references
Let \(p^\lambda_k\), \(k= 0,1,\dots\), be the normalized Gegenbauer polynomials orthogonal with respect to \(w^\lambda= (1- x^2)^{\lambda- 1/2}\) on \([-1,1]\), and consider the Fourier projection \[ S_nf= \sum^n_{k= 0}a_k(f) p^\lambda_k. \] The authors give upper and lower bounds for \(\|S_n\|^\lambda_p\) for \(p\geq (2\lambda+ 1)/\lambda\) or \(1<p\leq (2\lambda+ 1)/(\lambda+ 1)\). In particular, they show that \(\|S_n\|^\lambda_p\) is unbounded at the critical indices \((2\lambda+ 1)/(\lambda+ 1)\) and \((2\lambda+ 1)/\lambda\).
0 references
Fourier-Gegenbauer projection
0 references
orthogonal polynomials
0 references
Gegenbauer polynomials
0 references
0.9098286
0 references
0.9002235
0 references
0 references
0.89576507
0 references
0.89487183
0 references
0.8922009
0 references
0.8902242
0 references