Pointwise estimates on the Green's function for a scalar linear convection-diffusion equation (Q1300096)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Pointwise estimates on the Green's function for a scalar linear convection-diffusion equation |
scientific article; zbMATH DE number 1333010
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Pointwise estimates on the Green's function for a scalar linear convection-diffusion equation |
scientific article; zbMATH DE number 1333010 |
Statements
Pointwise estimates on the Green's function for a scalar linear convection-diffusion equation (English)
0 references
23 November 1999
0 references
The author studies the equations of the form \(v_t+(a(x)v)_x=(b(x)v_x)_x\), \(v,x,t \in {\mathbb{R}}, t>0\), and \(v_t+a(x)v_x=b(x)v_{xx}\), \(v,x,t \in {\mathbb{R}}, t>0\) with \(a,b\in C^K({\mathbb{R}})\) for some \(K\geq 1\), \(a(x),b(x)\) asymptotically constant at \(x=\pm \infty\), and \(b(x)\geq b_0>0\). The author obtains Gaussian type estimates from above for the fundamental solutions of these equations and their derivatives. The Gaussian factor in the estimates is centered around asymptotic values of the convection function \(a\).
0 references
Gaussian type estimates from above
0 references
0 references
0 references
0 references
0.9316134
0 references
0.91443706
0 references
0 references
0.9084159
0 references
0.90522027
0 references
0.8997945
0 references
0.8976834
0 references
0.8951285
0 references