Local isometric embeddings of surfaces into a 3-space (Q1302282)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Local isometric embeddings of surfaces into a 3-space |
scientific article; zbMATH DE number 1340802
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Local isometric embeddings of surfaces into a 3-space |
scientific article; zbMATH DE number 1340802 |
Statements
Local isometric embeddings of surfaces into a 3-space (English)
0 references
6 September 2001
0 references
The aim of this paper is to prove that any abstract smooth surface can be locally isometrically embedded into a class of 3-dimensional spaces \(N_{\rho_0}\), parametered by \(\rho_0 >0\), with sectional curvature \(K_{N_{\rho_0}}\) satisfying \(-{1\over \rho^2_0}\leq K_{N_{\rho_0}} \leq 0\).
0 references
local isometric embedding
0 references
Riemannian manifold
0 references
Gauss curvature
0 references
sectional curvature
0 references
0.93546224
0 references
0.92476153
0 references
0 references
0.9108109
0 references
0.9096545
0 references
0.90902555
0 references
0.9081614
0 references
0.9068667
0 references