Oleinik type estimates and uniqueness for \(n \times n\) conservation laws (Q1303824)

From MaRDI portal





scientific article; zbMATH DE number 1339357
Language Label Description Also known as
English
Oleinik type estimates and uniqueness for \(n \times n\) conservation laws
scientific article; zbMATH DE number 1339357

    Statements

    Oleinik type estimates and uniqueness for \(n \times n\) conservation laws (English)
    0 references
    0 references
    0 references
    25 October 1999
    0 references
    It is investigated the strictly hyperbolic \(n\times n\) system of conservation laws \(u_t+f(u)_x=0\), \(t>0\), \(x\in\mathbb{R}\), with the initial condition \(u(0,x)= \overline u(x)\). The authors prove that the above Cauchy problem has a unique weak solution, which satisfies some assumptions (entropy condition, tame oscillation or decay estimate). So, they generalize a classical result proved by \textit{O. A. Oleinik} in the scalar case [in Am. Math. Soc., Transl. II. Ser. 26, 95-172 (1963); translation from Usp. Mat. Nauk 12, No. 3, 3-73 (1957; Zbl 0080.07701)].
    0 references
    characteristic field
    0 references
    entropy-admissible solution
    0 references
    decay estimate
    0 references
    unique weak solution
    0 references
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references