Hölder continuity of local minimizers (Q1304648)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Hölder continuity of local minimizers |
scientific article; zbMATH DE number 1340141
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Hölder continuity of local minimizers |
scientific article; zbMATH DE number 1340141 |
Statements
Hölder continuity of local minimizers (English)
0 references
29 August 2000
0 references
The authors study the regularity of local minimizers \(u\in W^1_{p,\text{loc}}(\Omega)\), \(p> 1\), \(\Omega\) open in \(\mathbb{R}^n\), of the variational integral \[ J[u]= \int_\Omega F(x,u,\nabla u) dx \] with integrand \(F\) of the form \((\nu>0,\;0\leq \mu\leq 1)\) \[ F(x,u,z)= \nu(\mu+|z|^2)^{{p\over 2}}+ f(x,u,z), \] \(f\) being convex in \(z\) and satisfying the growth estimate \((L> 0)\) \[ 0\leq f(x,u,z)\leq L(1+|z|^2)^{{p\over 2}}. \] Note that no smoothness or ellipticity are imposed on \(f\). The main result states that local minimizers are locally Hölder continuous with any exponent \(0<\alpha<1\). One ingredient of the proof is a variational principle due to Ekeland.
0 references
regularity
0 references
local minimizers
0 references
variational integral
0 references
variational principle due to Ekeland
0 references
0 references
0.9597589
0 references
0.9444679
0 references
0.9295394
0 references
0.92066365
0 references
0.9188732
0 references
0 references