The Adams-Novikov \(E_2\)-term for computing \(\pi_*(L_2 V(0))\) at the prime 2 (Q1304854)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: The Adams-Novikov \(E_2\)-term for computing \(\pi_*(L_2 V(0))\) at the prime 2 |
scientific article; zbMATH DE number 1340401
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | The Adams-Novikov \(E_2\)-term for computing \(\pi_*(L_2 V(0))\) at the prime 2 |
scientific article; zbMATH DE number 1340401 |
Statements
The Adams-Novikov \(E_2\)-term for computing \(\pi_*(L_2 V(0))\) at the prime 2 (English)
0 references
21 February 2000
0 references
Let \(V(0)\) denote the mod \(p\) Moore spectrum, let \(E(2)\) stand for the corresponding Johnson-Wilson spectrum with coefficients \(E(2)_* \cong Z_{(p)}[v_1,v_2^{\pm 1}]\), and let \(L_2\) denote the Bousfield localization functor with respect to \(E(2)\). The \(E_2\)-term \(E_2^*(L_{2}V(0))\) of the Adams-Novikov spectral sequence converging to the homotopy groups of \(L_{2}V(0)\) is given by \(E_2^*(L_{2}V(0)) = \text{Ext}^*_{\Gamma}(A,A)\) over the Hopf algebroid \((A,\Gamma) = (E(2)_*, E(2)_*E(2))\). In the present paper the author determines the module structure of \(E_2^*(L_{2}V(0))\) for \(p=2\) using the chromatic spectral sequence.
0 references
Adams-Novikov spectral sequence
0 references
mod 2 Moore spectrum
0 references
Bousfield localization
0 references
0.95741355
0 references
0.89305377
0 references
0.88529634
0 references
0.86141175
0 references
0 references
0.8274826
0 references
0.8270676
0 references