Higher-order asymptotic approximations to the eigenvalues of the Sturm-Liouville problem in one turning point case (Q1305234)

From MaRDI portal





scientific article; zbMATH DE number 1346089
Language Label Description Also known as
English
Higher-order asymptotic approximations to the eigenvalues of the Sturm-Liouville problem in one turning point case
scientific article; zbMATH DE number 1346089

    Statements

    Higher-order asymptotic approximations to the eigenvalues of the Sturm-Liouville problem in one turning point case (English)
    0 references
    14 November 1999
    0 references
    The author obtains higher-order asymptotic approximations to the eigenvalues of the Sturm-Liouville problem \[ y''- q(x)y= \lambda^2f(x),\quad a\leq x\leq b,\quad y(a)= y(b)= 0, \] where for some point \(x_0\in (a,b)\): 1) \(f(x_0)= 0\), 2) \(f(x_0)=(x- x_0)^{-1}\), 3) \(q\) is continuously differentiable.
    0 references
    higher-order asymptotic approximations
    0 references
    eigenvalues
    0 references
    Sturm-Liouville problem
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references