Isomorphic classification of the spaces \(H_{\text{loc}}^k(\mathbb{R})\cap L^2(\mathbb{R})\) (Q1305328)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Isomorphic classification of the spaces \(H_{\text{loc}}^k(\mathbb{R})\cap L^2(\mathbb{R})\) |
scientific article; zbMATH DE number 1346231
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Isomorphic classification of the spaces \(H_{\text{loc}}^k(\mathbb{R})\cap L^2(\mathbb{R})\) |
scientific article; zbMATH DE number 1346231 |
Statements
Isomorphic classification of the spaces \(H_{\text{loc}}^k(\mathbb{R})\cap L^2(\mathbb{R})\) (English)
0 references
16 November 1999
0 references
The authors study the Sobolev spaces \(H^k({\mathbb R}) \cap L^2({\mathbb R})\) from an isomorphic point of view. These are Fréchet spaces when equipped with the family of seminorms \(p_{n}(f)= \|f\|_{H^k[-n,n]} + \|f\|_{L^2({\mathbb R})}\). It is shown that \(H^k({\mathbb R}) \cap L^2({\mathbb R})\) is isomorphic to the Köthe sequence space of Moscatelli type \(\lambda_{2}(n^k)\). Consequently, \(H^k({\mathbb R}) \cap L^2({\mathbb R})\) and \(H^m({\mathbb R}) \cap L^2({\mathbb R})\) are isomorphic if and only if \(k=m\).
0 references
Fréchet-Sobolev space
0 references
Köthe sequence space of Moscatelli type
0 references
Sobolev spaces
0 references
Fréchet spaces
0 references
0.9128606
0 references
0.91260856
0 references
0 references
0.9068777
0 references
0.90496063
0 references
0.8984683
0 references
0.89438003
0 references
0.88924545
0 references