\(R(C_n,C_n,C_n)\leqq (4+o(1))n\) (Q1305528)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: \(R(C_n,C_n,C_n)\leqq (4+o(1))n\) |
scientific article; zbMATH DE number 1346892
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | \(R(C_n,C_n,C_n)\leqq (4+o(1))n\) |
scientific article; zbMATH DE number 1346892 |
Statements
\(R(C_n,C_n,C_n)\leqq (4+o(1))n\) (English)
0 references
29 November 1999
0 references
Any coloring of ``almost all'' the edges of \(K_{4(1 + \eta)n}\) with three colors yields a monochromatic odd cycle of length at least \((1 + {\eta /10})n\), for every \(0 < \eta <10^{-5}\) and \(n \geq \exp(\eta ^{-50})\). It follows that the Ramsey number \(R(C_n,C_n,C_n)\) is bounded from above by \((4+o(1))n\). If \(n\) is odd, \(R(C_n,C_n,C_n)=(4+o(1))n\).
0 references
Ramsey number
0 references
0.8040755
0 references
0.80094016
0 references
0.79826146
0 references